Eran Rabani finds a scientific home in the Pitzer Center

Portrait of Eran Rabani

Theoretical chemists can be like the quantum realms they study. Each is unique and difficult to categorize. The College of Chemistry’s theorists can be loosely divided into three groups—those who use and develop statistical mechanics, those who study and develop quantum dynamics, and those who develop and apply electronic structure theory. Says chemistry professor Eran Rabani, “I work in all three subdisciplines, so in that sense I hope to be a bridge between different research groups.”

Born in Jerusalem in 1967, Eran Rabani’s childhood was punctuated by travels abroad as his father, a scientist, paid extended visits to Berlin, Copenhagen and the Argonne National Laboratory near Chicago. Rabani graduated from high school back home in Jerusalem, served for three years in the IDF, and returned to Jerusalem to earn his B.Sc. summa cum laude at the Hebrew University of Jerusalem in 1991. He remained at the Hebrew University for grad school and completed his Ph.D. in theoretical chemistry in 1996.

In 1996 Rabani moved to Columbia University for a three-year postdoctoral appointment. He had barely set foot in New York City when Louis Brus arrived at Columbia from Bell Labs. While at the labs, Brus had invented colloidal quantum dots and had also been the postdoctoral mentor of Paul Alivisatos, Berkeley Executive Vice Chancellor. “After I arrived at Columbia,” says Rabani, “I knocked on Brus’ door and ask him to ‘teach me about nanocrystals.’ We talked every day.”

This image portrays a colloidal nanocrystal that has been doped with impurity atoms. Doping of semiconductors enables their widespread application in micro- and opto-electronics. The Rabani group is applying these principles to colloidal semiconductor nanocrystals.

In 1999, Rabani joined the faculty at Tel Aviv University, Israel. He came to Berkeley first as a Visiting Miller Research Professor in 2010–11 and was permanently lured to the College of Chemistry in 2014. He returns to Tel Aviv often where he maintains his position as the director of the Sackler Center for Computational Molecular and Materials Science.

Rabani’s research spans theoretical chemistry and physics, and he sees an important distinction between them. “The way you think is important,” he explains. “Physics cares about how the world works. It seeks finite universality, or explaining the most observations with the simplest and most general theories. Chemistry is more about finding exceptions. It is often the details that matter more. I enjoy both worlds.”

Research in the Rabani group involves the development of theoretical and computational tools to investigate fundamental properties of nanostructures. This includes the structural, electronic and optical properties of semiconducting nanocrystals. The Rabani group has also been involved in the study of several aspects of the self-assembly of nanomaterials, a critical process in fabricating and controlling spontaneously organized nanoscale devices and one of the major challenges of nanotechnology.

Rabani has published several papers with departmental colleagues Alivisatos and Phill Geissler on the characteristics of quantum dots and nanocrystals. His group has also made fundamental breakthroughs in simulating the complex interactions of quantum mechanics’s many-body problem.

“The Pitzer Center is a unique environment. Being around so many other theorists helps create synergies—we feed off each other. Berkeley is the best science university in the world. If you are interested in basic science you cannot ask for more…”